What determines the SED mm-slope of protoplanetary discs?

Peter Woitke & Michiel Min St. Andrews University (UK) University of Amsterdam (NL)

Dust Opacities?

Disk Shape?

1. Dust Opacities

AstroSilicate: mono-sized ($a = 0.3 \,\mu$ m), perfect spheres, Mie-theory astronomical silicate (Draine & Lee 1984)

$$eta_{
m abs} = -rac{d\log\kappa_{
m abs}}{d\log\lambda}$$

(here measured between $\lambda = 850 \,\mu$ m and 3.5 mm)

1. Dust Opacities

AstroSilicate: mono-sized ($a = 0.3 \,\mu$ m), perfect spheres, Mie-theory astronomical silicate (Draine & Lee 1984)

$$eta_{
m abs} = -rac{d\log\kappa_{
m abs}}{d\log\lambda}$$

(here measured between $\lambda = 850 \,\mu$ m and 3.5 mm)

Laboratory Silicate, AC, and FeS

all: mono-sized ($a = 0.3 \,\mu$ m), perfect spheres, Mie-theory AstroSilicate: astronomical silicate (Draine & Lee 1984) LabSilicate: 60% Mg₂SiO₄ + 40% MgSiO₃, Jena-database, Bruggeman (1935) mixing +AC: add 5% amorphous carbon (Jaeger et al. 1998 – cel800) +FeS: add 5% troilite (http://www.mpia-hd.mpg.de/homes/henning/Dust_opacities/Opacities/RI/new_ri.html)

Laboratory Silicate, AC, and FeS

all: mono-sized $(a = 0.3 \,\mu\text{m})$, perfect spheres, Mie-theory AstroSilicate: astronomical silicate (Draine & Lee 1984) LabSilicate: 60% Mg₂SiO₄ + 40% MgSiO₃, Jena-database, Bruggeman (1935) mixing +AC: add 5% amorphous carbon (Jaeger et al. 1998 – cel800) +FeS: add 5% troilite (http://www.mpia-hd.mpg.de/homes/henning/Dust_opacities/Opacities/RI/new_ri.html)

The Effect of Conducting Impurities

Shape Irregularities and DHS

pureAC: $a = 0.3 \,\mu$ m, amorphous carbon (Jaeger et al. 1998 – cel800)

DHS: distribution of hollow spheres (Min et al. 2005),

e.g. ${f 0.9}$: maximum hollow sphere volume ratio $f_{
m max}\!=\!V_{
m core}/V$

- hollow sphere's radius and shell thickness provide two different spatial scales to model shape irregularities ("antennas", "iron needles", etc.)
- these are sub- μ m particles! Also applies to impurities in big grains!

Irregular Particles (Aggregates)

DiscAnalysis

JIANA

Aggregate (DDA):composite, irregular particles (discrete dipole approximation)
75% MgSiO_3, 10% FeS, 15% ACSpheres:same Bruggeman (1935)-mix, Mie theory
Same mix, but with 25% porosity & DHSMin et al. (2013, in prep.):check simple methods against detailed DDA computations
recommend opacity standards for multi- λ disk models

Analysis and Modelling of Multi-wavelength Observational Data from Protoplanetary Discs

FP7-SPACE 2011 collaboration

St Andrews	Vienna	Amsterdam	Grenoble	Groningen
P. Woitke	M. Güdel	R. Waters	F. Ménard	I. Kamp
		Min Dominik		
sub-mm to cm	Dionatos Rab Liebnart	noor-mid IR	noar-far IB	noar IR - mm
sub-min to cm	obs (mod	meal-Initia Int	obg/mod	med /obg
	VMM Harashal		UUS./ IIIUU.	HIUU./UUS.
JUMI, EMERLIN	AMINI, Herschel		път, nerschel	nerschel, JWS1
astrobiology	high energy	dust mod.	interferometry	gas mod.

multi- λ data collection X-ray to cm (archival and proprietary) coherent, detailed modelling of gas & dust throughout the disc using disk modelling software ProDiMo, MCMax, MCFOST **aim:** disc shape, temperatures, dust properties, chemistry in the birth-places of exoplanets

size distribution and mm-slope

• size distribution $f(a) \propto a^{-a_{pow}}$ from $a_{min} = 0.05 \,\mu m$ to $a_{max} = 1 \, mm$,

- $\bullet~50\%~MgFeSiO_4$ $+~30\%~Mg_{0.5}Fe_{0.5}SiO_3$ +~10%~AC +~10%~FeS
- no porosity, no DHS, no irregularities

Dust Opacities?

Disk Shape?

Parameters of the betaGRID

stellar parameter						
	fixed: T Tauri (K7), $T_{\text{eff}} = 4000 \text{ K}, L_{\star} = 1 L_{\odot}, M_{\star} = 0.7 M_{\odot},$					
	$L_{\rm UV}/L_{\star} = 0.01, \ L_{X} = 10^{30}L_{\odot}$					
disk shape parameter						
1.	$M_{ m dust}$	disk mass $[M_{\odot}]$	0.001, 0.003, 0.01, 0.03, 0.1			
2.	$R_{ m out}$	outer disk radius $[AU]$	100, 200, 400			
3.	ϵ	column density power index	0.5, 0.75, 1.0, 1.25, 1.5			
		using $\Sigma(r) \propto r^{-\epsilon} \exp\left(-r/R_{\rm tap}\right)$				
4.	H_0	scale height $[AU]$ at $R_0 = 3 AU$	0.1, 0.14, 0.2, 0.28, 0.4			
5.	eta	flaring power $H(r) = H_0 \left(\frac{r}{R_0}\right)^{\beta}$	1.04, 1.08, 1.12, 1.16, 1.2			
fixed: $gas/dust = 100, R_{in} = 0.07 \text{ AU}, R_{tap} = R_{out}/4$						
dust parameter						
6.	$a_{ m pow}$	size power index $f(a) \propto a^{-a_{\text{pow}}}$	3.35, 3.5, 3.65, 3.8, 4.05			
7.	α	turbulent mixing for settling	$10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$			
	fixed: $a_{\min} = 0.05 \mu\text{m}, a_{\max} = 1 \text{mm}, \text{Dubrulle}(1995)$ -settling					
	$(45\% \text{ MgFeSiO}_4, 35\% \text{ Mg}_{0.5}\text{Fe}_{0.5}\text{SiO}_3, 15\% \text{ AC}, 5\% \text{ FeS})$					

- 1000 disk models, $T_{\text{dust}}(r, z)$ & SEDs computed with
- $T_{\rm gas}(r, z)$, chemistry & emission lines computed with **ProDiMo** (Woitke et al. 2009)

2. Does the opacity-slope determine the SED mm-slope?

Dust Mass Determination via $F_{\nu}(1.3 \text{ mm})$

optical depths effects limit flux-increase for M_{disk} ≥ 0.01 M_☉, as expected
FWHM of single-M_{disk} flux-distribution is about 0.6 dex (!)

An Improved Dust Mass Determination Method?

- the SED-slope α_{SED} can help to disentangle $M_{ ext{disk}} = M_{ ext{disk}}(F_{1.3 \, ext{mm}})$
- if the opacity slope $\beta_{\rm abs}$ is known, the correlation becomes very tight $M_{\rm disk} = M_{\rm disk}(F_{1.3\,{\rm mm}}, \, \alpha_{\rm SED} \beta_{\rm abs})$

Why still 1 order of mag diversity?

• one parameter sticks out: dust settling!

What is more important for SED mm-slope?

dependence on opacity-slope

dependence on dust settling

- dust settling alone is as important as the opacity-slope
- other disk properties (R_{out} , scale height, flaring, ϵ , ...) play a role, too
- \Rightarrow together, disk shape & settling seem more important (!)

Why can settling make an order-of-mag difference?well-mixed ($\alpha = 0.1$)strong settling ($\alpha = 10^{-5}$)

$$F_{1.3\,mm} = 0.096\,Jy, \ \alpha_{SED} = 2.50$$

 $F_{1.3 \,\mathrm{mm}} = 0.014 \,\mathrm{Jy}, \ \alpha_{\mathrm{SED}} = 1.65$

- dust settling moves the grains to the cold midplane, where almost no photons are going
- dust settling enhances the shadowing effect, and vertical $T_{
 m dust}$ -contrast
- dust settling changes the fraction between small and large grain emission

Summary

- mm-sized particles: A size distribution up to mm-sized particles is the most obvious explanation for a flat mm-opacity slope.
- conducting materials: Dust emission at (sub-mm) wavelengths is dominated by impurities of conducting materials.
- irregular shape: If these impurities have strongly irregular shapes, the mm-opacity is flat and very strong, even for small particles
- Disk shape (in particular dust settling, also flaring) is at least as important for the SED mm-slope as the dust opacity-slope
- \bullet Strongly settled disks are cold & faint, with a flat SED mm-slope
- dust mass: Observing the mm-flux in combination with the SED mm-slope can improve M_{dust} -determination

strong settling ($\alpha = 10^{-5}$)

